Arachne: An Open-Source Framework for
Interactive Massive-Scale Graph Analytics

New Jersey Institute
of Technology

Introduction

In this poster we introduce Arachne, a
framework that enhances productivity in
massive-scale graph analytics. Arachne offers
kernels for efficient graph analysis such as
connected components, breadth-first search,
triangle counting, k-truss, amongst others. The
kernels are integrated into a backend server
written in Chapel and can be accessed through a
Python application programming interface (API).
Arachne delivers high performance for graph
analysis, and we have assessed its capabilities
with the Friendster social network that is
comprised of 1,806,067,135 edges and
65,608,366 vertices. Arachne’s backend server is
compatible with Linux supercomputers, is easy
to set up, and can be utilized through either
Python scripts or Jupyter notebooks, which
makes it a desirable tool for Python data
scientists who have access to highly performing
Linux compute clusters. Find Arachne on GitHub
at https://github.com/Bears-R-Us/arkouda-njit.

Arachne Essential

file

|

graph reading

creating graph from arrays

l

DI data structure

Arachne Core

breadth-first search

connected components

triangle counting

triangle centrality

truss analytics

Figure 1: Arachne infrastructure.

Background

Chapel is a language that increases productivity
for projects that require the partitioned global
address space model (PGAS). PGAS allows a
program to have a global view of memory across
all the computational nodes that make up a
system. There are still remote and local accesses,
but access to remote data does not require
elaborate code to handle it such as in programs
written in C or C++ with OpenMP and MPI.
Rather, the parallel structures in Chapel, such as
forall loops, allow for computations to be
performed across multiple nodes as if in a
shared-memory system.

Motivation

We were tasked with providing graph kernels to
run analysis on graph data stored in Arkouda’s
parallel and distributed arrays. The graphs could
grow larger than a million edges and were to
also store node labels, edge relationships, and
properties. Property graphs were to be filtered
to return simple graphs that could then be
processed further by our graph kernels. Lastly,
the APl should match NetworkX’s.

Presenter: Oliver Alvarado Rodriguez
Advisor: David A. Bader
New Jersey Institute of Technology

Contributions

1. A flexible double-index (DI) data structure for
simple undirected graphs, directed graphs,
and property graphs. Distributes graph data
across compute nodes in an edge-centric and
PGAS-friendly manner.

. High-performing graph kernels for breadth-
first search, connected components, truss
analytics, triangle counting, and triangle
centrality.

3. A novel minimum-search triangle counting
algorithm and kernel.

Double-Index Data Structure

. Given an edge index, we can extract all the
vertex information in constant time including
neighbors and any data held by that node.

. Generating the neighborhood of a vertex
takes time proportional with the size of its
neighborhood.

. The edges are equally distributed amongst
locales where each locale can locally process
its own edges.

S9JI1AA U

100

l

4\— STR[50]=100

m sorted edges
)

50 20

50 30 v
NEI[50]=4

50 40

50 60

— —/

Figure 2: Double-index (DI) data structure.

Property Graphs in DI

1. Given an edge or vertex index, all the
properties, labels, and relationships can be
extracted in time proportional to the size of
the storing list.

. Generating simple subgraphs involve basic
boolean indexing on Arkouda dataframes and
calling the base graph generator provided by
Arachne.

— customer

— seller
» drives

— buys —— sells

O 00 N OO0 N & W N = O

Figure 3: Property graphs in DI.

CCF-2109988

Graph Filtering

Property graphs can be generated from Arkouda
dataframes, which are a collection of Arkouda
arrays. Filtering these dataframes returns arrays
that contain the nodes and edges that make up
our subgraph. Then, a graph can be easily
created by calling our subgraph_view method
with the edges that make up our filter. A code
snippet is shown below where “sr¢” and “dst”
make up the edges of the subgraph.

A = ak.arange(9, len(df), 1)
idx = df["col"] == "drives"
filter = df[idx]["src", "dst"]
subgraph = ar.subgraph view(

graph,

ar.Graph(),

filter relationships=filter

Results

BFS 362.75 4978834

CC 168.23 10735759
KT 5 21155.35 85372
KT M 31248.61 57797
KT D 31356.50 57598
TRICNT 13339.06 135397
TRICTR 19590.32 92192

Table 1: Results on Friendster graph.

| = Graph Construction
— BFS

— CONN-Comps

1 == Tricnt-Min

«» Max-Truss
-+ Truss_Dec

Execution Time (seconds)

216 218 220 222 224 226

Number of Edges

Figure 4: Scalability on synthetic graphs.

Conclusion

Most Python solutions for graph analysis only
provide kernels for either sequential or shared-
memory parallel systems. Arachne is built with
the intention to be run on both shared-memory
and distributed-memory systems. Future work
includes optimizations targeting communication
costs and implementing more kernels such as
community detection. This is joint work with
Zhihui Du, Joseph Patchett, Naren Khatwani, and
Fuhuan Li.

References

1. Oliver Alvarado Rodriguez, Zhihui Du, Joseph
Patchett, Fuhuan Li, David Bader (2022).
Arachne: An Arkouda Package for Large-Scale
Graph Analytics. |IEEE HPEC.

. Zhihui Du, Joseph Patchett, Oliver Alvarado
Rodriguez, Fuhuan Li, David Bader (2022).
High-Performance Truss Analysis in Arkouda.
IEEE HiPC.



https://github.com/Bears-R-Us/arkouda-njit

